N93-11368

[
ANALYSIS OF

METHCNS Final Technical

(MASA-CR=-190273)

Report

(?esearch Inst. for Computing and

[Information Systems)

Uncl as

134 p

0086872

6G3/61

Analysis of Me thods

Final Report
Richard J. Mayer, ed.

Knowledge Based Systems Laboratory
Texas A&M University

March 8, 1991

Cooperative Agreement NCC 9-16

Research Activity No. IM.06:
Methodologies for Integrated
Information Management Systems

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

- -
FECAE

Research Institute for Computing and Information Systems
University of Houston-Clear Lake

TECHNICAL REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilittes. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-186,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS missionis to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materfals, prototypes and publications on topics of mutual interest
to its sponsors and rescarchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

Analysis of Methods

Final Report

RICIS Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Dr. Richard J. Mayer, Keith A. Ackley, M.
Sue Wells, Dr. Paula S.D. Mayer, Thomas M. Blinn, Louis P. Decker, Joel A. Toland,
J. Wesley Crump, Dr. Christopher P. Menzel, Charles A. Bodenmiller and Michael T.
Futrell of Texas A&M University; Stu Coleman and Timothy Ramey of PIM, Inc. and
Dr. Tom Cullinane of Northeastern University. Dr. Peter C. Bishop served as RICIS

research coordinator.

Funding has been provided by the Air Force Armstrong Laboratory, Logistics
Research Division, Wright-Patterson Air Force Base via the Information Systems
Directorate, NASA/ISC through Cooperative Agreement NCC 9-16 between the NASA
Johnson Space Center and the University of Houston-Clear Lake. The NASA technical
monitor for this research activity was Robert T. Savely of the Information Technology

Division, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

Analysis of Methods

KBSL - 89- 1001

Knowledge Based Systems Laboratory
Department of Industrial Engineering
Texas A&M University
College Station, TX 77843

Copyright ©1989, Texas A&M University

Permission to use, copy, and distribute this document for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both

the copyright notice and this permission notice appear in supporting documentation,
and that the name of Texas A&M University not be used in advertising or publicity pertaining
to the distribution of the document without specific, written prior permission.

The information in this document is subject to change without notice, and should not be
construed as a commitment by Texas A&M University. Texas A&M University assumes no
responsibility for the use of this information. The views contained in this document are those
of the research team, and should not be interpreted as representing the policies, either
expressed or implied, of the United States Air Force, NASA, or of the RICIS Program Office.

Analysis of Methods

Edited by
Richard J. Mayer, PhD

Authors
Richard J. Mayer, PhD Louis P. Decker
Keith A. Ackley Joel A. Toland
M. Sue Wells J. Wesley Crump
Paula S.D. Mayer, PhD Christopher Menzel, PhD
Thomas M. Blinn Charles A. Bodenmiller

Michael T. Futrell
Stu Coleman, PIM Inc.

Timothy Ramey, PIM Inc.
Tom Cullinane, PhD Northeastern Unversity

Final Report
March 8, 1991

Acknowledgements: This report describes ongoing research at the Knowledge
Based Systems Laboratory of the Department of Industrial Engineering at Texas
A&M University. Funding for the lab’s research in Integrated Information System
Development Methods and Tools has been provided by the United States Air Force
Human Resources Laboratory, AFHRL/LRL, Wright Patterson Air Force Base,
Ohio 45433, under the technical direction of USAF Captain Michael K. Painter,
under subcontract through the NASA RICIS Program at the University of Houston.

Additional funding has been provided by Tandem Computer Corporation for broader

coverage in the analysis of existing methods as represented by the Data Flow
Analysis and Structure Chart chapters.

Table of Contents

Introduction e e e .. 1
IDEF1: InformationMeodeling 4
HistoryandPurpose 4
Syntax and Semantics L 6
Entity Class, Attribute Class, and Key Class 7

Link (orRelation)Classes 9
Inheritance 11
Metamodel 12
Entity classes and Owned Attribute Classes 13
LinkClasses it 14
KeyClasses 15
Attribute ClassesinKey Classes 15
Strengths and Weaknesses, 16
TipsandTraps 16
Integration With Other Methodologies 17
Conclusions e 17
IDEF0: Method for Function Modeling 20
HistoryandPurpose 20
Syntax and Semantics L. 23
Basic Symbols ADEFOlexicon) 23
Grammar Rules for Function Descriptions 24
Concepts e 26
Metamodel 27
Activities and Decompositions 28
StructuresandConcepts L. 28

Links e 31

Pathso e 31
Strengths and Weaknesses of IDEFO 32

Integration With Other Methodologies 33

Table of Contents

Conclusions 33
ENALIM: Conceptual Schema Design e e e 37
HistoryandPurpose~ 37
Syntax and Semantics L L. 38
NOLOT (NOn Lexical Object Type) 38
LOT (Lexical Object Type) 39
FactTypes 39
RoleConstraints 40
Identifier Constraint 40

Role Uniqueness Constraint 42
TotalRole Constraint 42

Role Equality Constraint 42

Role Exclusion Constraint 43

Role Subset Constraint 43
SubtypeConstraints 4
Subtype Exclusion Constraint 44
Subtype Total Constraint 45
Metamodel 45
NOLOT Families 45
FactTypes 47
TotalRole Constraint 47
Subtype Constraints 48
RoleConstraints 48
Strengths and Weaknesses 49
TipsandTraps 50
Integration With Other Methodologies 50
Conclusions, 50
IDEF1x: Data Modeling et e e e e e e 53
HistoryandPurpose 53
Syntax and Semantics L L S5
Entities 55

Analysis of Methods , i

Table of Contents

ConnectionRelationships 56
Categorization Relationships 57
Non-SpecificRelations 58
Attributes 58
RoleNames 59
Keys e 59
ForeignKeys 60
Metamodel 60
EntitySubmodel L o 60
RelationSubmodel 64
KeySubmodel65
AttributesandRoles L L L. 65
Strengths and Weaknesses 66
Integration With Other Methodologies 68
Conclusions e 69

Entity Relationship: Conceptual Schema Design 72

HistoryandPurpose, . 72
Syntax and Semantics Lo 73
Metamodel 75
BaseEntityClasses 76

Entity Set/Relationship Set Interaction 77

Entity Set/Relationship Set/Attribute Interaction 78
Attribute/Value Set Interaction, 80
TipsandTraps e 80
Strengths and Weaknesses 81
Integration With Other Methodologies 82
Conclusions 82
Data Flow Diagrams: Design and Analysis 85
HistoryandPurpose 85
Syntax and Semantics L. oo 86
Process e 86

Analysis of Methods

i

Table of Contents

External Entity 86
Data Store 87
DataFlow 87
Differences between DFDs and Flow Charts 88
Differences between DFDs and Logical DFDs 88
Metamodel 88
Relationship of process to other entity classes 9%
Leveling/decomposition 93
Role of the Structure and Link Entity Classes 93
Strengths and Weaknesses 94
TipsandTraps 95
Integration With Other Methodologies 96
Conclusions 96
Structure Charts: Modeling the Referential Structure 100
What are Structure Charts? 101
Syntax and Semantics T, 101
Modules 101
Intermodular ConnectionsandCouples 102
Procedural Annotations 105
Metamodel 105
Modules 106
Lexical Relationships - 0107
Intermodular Connections 107
Couples 108
Labels 109
Control Structures 109
Connections in Control Structures 110
Strengths and Weaknesses 110
TipsandTraps, 111
Integration With Other Methodologies, . 112
Conclusions 113

Analysis of Methods iv

Table of Contents

Glossary of Important Terms117

Analysis of Methods v

Introduction

Analysis of Methods

nformation is one of an organization’s most important assets.

For this reason the development and maintenance of an inte-
grated information system environment is one of the most important
functions within a large organization. The Integrated Information
Systems Evolution Environment (IISEE) project has as one of its
primary goals a computerized solution to the difficulties involved in
the development of integrated information systems. These difficulties
involve such issues as:

 What activities are performed within the organization by either
individuals or groups of individuals.

* What, how and when do these individuals or groups communi-
cate.

* What information is required by these individuals or groups.

* How is this information to be presented to the individual users of
the system.

To develop such an environment a thorough understanding of the
enterprise’s information needs and requirements is of paramount
importance. This document is the current release of the research
performed by the Integrated Development Support Environment
(IDSE) Research Team in support of the IISEE project.

Our research indicates that an integral part of any information system
environment would be multiple modeling methods to support the
management of the organization’s information. Automated tool sup-
port for these methods is necessary to_facilitate their use in an
integrated environment. An integrated environment makes it neces-
sary to maintain an integrated database which contains the different
kinds of models developed under the various methodologies. In
addition, to speed the process of development of models, a procedure

Final Report

Analysis of Methods

Introduction

or technique is needed to allow automatic translation from one
methodology’s representation to another while maintaining the in-
tegrity of both. The purpose for the analysis of the modeling methods
included in this document is to examine these methods with the goal
being to include them in an integrated development support environ-
ment. To accomplish this and to develop a method for allowing
intra-methodology and inter-methodology model element reuse, a
thorough understanding of multiple modeling methodologies is nec-
essary.

Currently the IDSE Research Team is investigating the family of
Integrated Computer Aided Manufacturing (ICAM) DEFinition
(IDEF) languages IDEFy, IDEF|, and IDEF|x, as well as ENALIM,
Entity Relationship, Data Flow Diagrams, and Structure Charts, for
inclusion in an integrated development support environment. The
analysis of these methods began with the development of IDEF|
metamodels for each method and a metamodel for the integrated
database. This ongoing analysis has the following goals and should
provide answers to many questions about the nature and application
of system engineering methods..

* To gain a thorough undcrstanding of the various methods.

* To determine where the methods overlap in order to assist in
achieving information sharing between the methods.

» To gain the understanding necessary to translate manually from
one method to another. The goal here will be to eventually
provide automatic assistance in model translation.

+ To begin to extract the theoretic foundations of each model

method (if they exist).

* To develop the motivations (if they can be recovered) behind the
development of the methods for the purpose of determining the
original rationale for the development rather than how the meth-
ods have been applied.

* To understand how individual methods have been successfully
applied, possibly outside of their original intent.

* To determine if an original engineering discipline exists for
designing methods. This analysis represents reverse engineering
on methodology development. It will assist the research team in
determining what it takes to engineer a method.

* To determine which methodology should be used to discover
information required or to answer questions encountered at each
stage of the information system development process. This will
involve determining what the application limits of each method

Final Report

Analysis of Methods

Introduction

are and how the corresponding models or documents produced
by a method can best be used.

* To determine what composes a good model of a given type. By
“good model,” we mean that the model is a syntactically and
semantically correct model that concisely and correctly conveys
the information intended by the author. Furthermore, a “good
model” implies that the model was created using a methodology
appropriate for the domain.

The process of creating metamodels for the various methodologies
will allow the Research Team to define what information can be
managed by a method in its native form. Knowing exactly what
information is managed by two different methods is a precondition
to the information integration of the methods and of automated model
translation.

Traditionally, many people believe that many models contain the
same information just packaged differently. However, in our work to
date it is increasingly clear that this is not true. Little commonality
between the information contents of models produced by different
methods has been found. Different methods capture different aspects
of the information system being designed. Furthermore, it is clear that
a collection of methods, each managing its own part of the overall
evolving system definition, is essential in the development of an
integrated information system environment. All of the questions
regarding these methodologies have not been answered. This docu-
ment reflects our progress in the analysis of modeling methodologies
and automated model translation.

1 Fora description of theoretic formalizations that have been established forIDEF),
1x, 3, and information constraint specification languages. interested readers
should also referto MayerR.J., et al. “Development Methodologies for Integrated
Information Management Systems”. Final Technical Report to United States Air
Force Human Resources Laboratory. AFHRL/LRL, Wright Patterson Air Force
Base,Ohio, Knowledge Based Systems Laboratory, Texas A&M University,
1988.; Menzel, C.P. and Mayer R.J., “IDEF3 Technical Report”, Knowledge
Based Systems Laboratory Technical Report (KBSL-89-1006),1989.; Menzel,
C.P. and Mayer R.J., “Theoretical Foundations for Information Representation
and Constraint Specification”, Knowledge Based Systems Laboratory Technical
Report (KBSL-89-1001),1989.

IDEF]: Information Modeling

Analysis of Methods

efore attempting any of the other chapters in this report the

Integrated Computed Aided Manufacturing (ICAM) DEF-
inition (IDEF) language IDEF] must be understood. IDEF) has a
simple and clean syntax which can be leamed quickly. On the other
hand, there is an art to modeling in any methodology. IDEF|’s design
makes it imperative that the modeler understand proper modeling
discipline.

As in each of the following chapters, this chapter will begin with a
discussion of IDEF}’s history and purpose and then move on to its
syntax and semantics. Those familiar with the methodologies may
not need to read the syntax and semantics sections, but keep in mind
that many methodologies have several dialects. In order to understand
the metamodels, it is important that the reader understand which
dialect is being modeled. In general, the original definitions of
methodologies are strictly followed.

2.1 History and Purpose

The family of IDEF methodologies is meant to provide methods and
languages for discovery, representation, and consensus development
of the views of an enterprise necessary to allow for planning and
design of integrated information systems. That is, the IDEF method-
ologies were specifically developed for supporting the domain ex-
perts and systems analysts in gathering information about the existing
environment and achieving consensus within the environment rela-
tive to those descriptions. IDEF(was developed to model the deci-
sions, actions, and activities within a domain and the relationships
among those activities. IDEF] provides the methods for discovery
and representation of the logical structure and relations between basic
information groups actually managed by an organization. IDEF;

Final Report

Analysis of Methods

IDEF

provides amethod for development of quantitative simulation models
that allow the study of time varying behavior of a system that is
stochastic in nature. IDEF3 supports the direct capture of domain
experts descriptions of process flow and object-state transitions.
IDEFs is under development to support the capture and representa-
tion of domain knowledge, concepts, and terminology (sometimes
referred to as domain ontologies). IDEF|x was the first IDEF meth-
odology to focus on support of system design activities. IDEFx data
incorporates criteria for efficient conceptual schema design. IDEF4
was developed later to support the design of object-oriented systems,
particularly systems encompassing the use of object oriented
databases. As a family, the IDEF methodologies provide the modeler
with the ability to concentrate on views of an enterprise without using
a “sledge hammer” methodology meant to model all views.

IDEF| models the information managed within a system. It is closely
related to but not a subset of IDEFix. By providing a methodology
for data modeling and consequently conceptual schema database
design, the developers of IDEF|x added constructs which cloud the
distinction between data which is kept about objects and the objects
themselves. This was necessary since a conceptual schema by defi-
nition is a type of data dictionary (albeit a complex on-line dictionary
used to provide both access and control to distributed electronic
heterogeneous databases). Thus, a conceptual schema designer must
develop a structure that can both contain the data objects and the
information about those data object (such as their physical system
location). IDEF1 however, was designed to be both more general and
less committed to any particular implementation concept. In a prop-
erly developed IDEF| model there should never be any misconcep-
tions, only the information kept within an organization about objects
(physical, abstract or data) is being modeled.

IDEF] entities need not correspond directly to any particular object
in the real world. The IDEF| model represents the modeler’s analysis
results. The analysis method results in a reconstruction of the under-
lying structure and grouping of the information actually managed. In
the real world these logical groups of attributes may be distributed
over many data artifacts. Also, since data can be kept by the organi-
zation about any object (physical, abstract or data), this flexibility is
necessary when attempting to establish information requirements.
However, it is not constraining enough when doing database design
(hence the need for IDEF1x, IDEF4, Entity Relationship (ER) and
other design methods).

As with any of the IDEF methodologies, IDEF] has primarily been
used by defense contractors under contract to the Air Force. Hughes
has a proprietary version of IDEF} called ELKA (Entity Link Key

Final Report

Analysis of Methods

IDEF;

Attribute) [Ramey 85]. IDEF|’s connection with defense projects is
good in that a strong underlying analysis method has been developed
for the application of IDEF] modeling. With the emergence of the
recognition of the need for a system development framework of
methods and the availability of low-cost integrated tools for IDEF
application, we can expect to see IDEF) gain more widespread usage.

2.2 Syntax and Semantics

The lexicon of the IDEF] language syntax consists of four basic
symbols:

Entity Class Label

» Labeled boxes denoting entity classes,

» Labeled lines with five different types of diamond shaped termi-
nators denoting relation classes,

Symbols denoting
sftribute classes

YYYY V
/v Zzzz
Anribute class label | 'm' __]

» Labels inside the boxes denoting attribute classes,

(WWWW YYYY)
zzzz) }""7— Symbols denoting
key clasoes

oo]

» Parenthesized (or underlined) sets of labels denoting key classes,

Final Report

Analysis of Methods

IDEF;

2.2.1 Entity Class, Attribute Class, and Key Class

The concept of an “entity class” is meant to capture the notion of a
basic information structure the extension of which at any point in time
is a set of informational items called entities. The two basic concepts
behind the notion of an entity are:

* they are persistent (i.e., the organization expends the resources
(time, money, equipment or facilities) to observe, encode, record,
organize and store the existence of individual entities).

* they canbe individuated (i.e. they can be identified uniquely from
other entities).

The IDEF) language does not provide a means of representing
individual entities. Only groups of entities which share exactly the
same types of attributes can be represented. These groups from an
IDEF| view are called classes. A useful memory aid for this notion
is to think of the entity class as a layout for a card file (see Figure
2.1). An entity class has a name and a unique identification number
associated with it, along with a glossary entry and a list of synonyms.
An entity class is represented by a rectangular box with the label of
the entity class located in the lower left corner surrounded by a
smaller rectangle and with the entity class numberlocated in the lower
right corner of the larger box.

<EMP¥, 725>
<SSN, 361-34-9843>

p

(EMP#)
(35N)
Salary
Gender

I emrioves e

Figure 2.1 Card file interpretation of an IDEFI entity class.

An entity class is actually defined by the set of attribute classes that
define the characteristics of all the possible entities in all of its

- extensions. It is important to note that the set of attributes is more

important that the notion conveyed by the label on the entity class

Final Report

SALARY

ADDRFSS

(EMPY)
(SSN)
Salary
Address

Bucket Analogy

Analysis of Methods

IDEF;

name! In other words, one can think of the entity class as simply a
labeled bucket with no meaning beyond that of the collection of
attribute classes it contains (see insert for example). In fact, it is
considered good practice to use an entity class label that does not
name a physical or data object in the domain since that could confuse
an uninformed reader. The labels of the attribute classes that define
an entity class are simply listed in the entity class box below the key
class designators and above the entity class label.

The occurrence of the same attribute class in multiple entity class
definitions defines a relationship between those entity classes. In
order to establish the existence dependency between such entity
classes, one entity class must be determined to be the “owner” of the
shared attribute class. Every attribute class that ends up being a part
of an IDEF| model has exactly one owner entity class. When deciding
on the addition of an attribute class to an entity class; two rules must
be followed. The first is referred to as the No-Null Rule. This rule
states that no member of an entity class can take a null value for its
attribute that corresponds to the added attribute class (Figure 2.2).
The second rule, the No-Repeat rule, states that no member of an
entity class can take more than one value at a time for its attribute
that corresponds to the added attribute class (Figure 2.3).

Each entity class has associated with it at least one key class. A key
class is just a special subset of the attribute classes which define the
entity class. What makes such key class subsets special is that it can
be determined that for any instance, the values of the attributes of that

<STUDENT®, 343>
Dossm't beloag *
here because it <GPR, 40>
has no pledge
<STUDENT®, 234>
<GCPR, 3.9>
—t
A student can be sacaciated with zero or one Greek organizations
(s1D) (S1Dy / (SID)
aPR GPR ASSOC
Assoc ma— 3
STUDENT I STUDENT l GREEK l
Figure 2.2 Example of the No Null Rule.
8

Final Report

(EMP#, EMP-NAME)

Analysis of Methods

IDEF;
An smployse may have 2610, one, or many siblings.
2 e | =
NAME N
smLING — <
EMPLOYEE [evmovee | I smimo |

Figure 2.3 Example of the No-Repeat Rule.

instance (which correspond to the attribute classes in a key class),
collectively, will uniquely identify that instance of the entity class
from all other instances. In an IDEF| diagram, the key class subsets
are located in the upper left comer of the entity class for which the
key class is being defined. Key classes are not named or labeled. A
key class is denoted by enclosing the subset of attribute classes that
make up the key class in parentheses or by underlining the subset. In
the metamodels of this report we will use the parenthesis convention.
It should be noted that entity classes are allowed to have multiple key
classes. The multiple key classes would reflect multiple ways of
identifying an entity class instance. For example, in a model of a
typical business environment, an instance of an EMPL entity class
might have multiple key classes. The first would consist of the
employee’s name in combination with an employee number. The
second key class may consist only of the employee’s Social Security
Number. In both cases, an EMPL entity class instance could be
uniquely identified by either key class (see insert for example).

2.2.2 Link (or Relation) Classes

A link is a binary relationship that exists between two entities. It is
established by the sharing of a common attribute(s) which must
assume the exact same value in each of the two entities involved in
the link. In IDEF; the generalization of all such links involving
instances of the same two classes of entities and the same shared
class(es) of attribute(s) is called a link class. A link class establishes
a binary relationship between two entity classes that share a common
attribute class. A link class is represented by a line running between
the boxes of the two entity classes. A label, representing the name of
the link class, is displayed over the line representing the link. Because

Final Report

Analysis of Methods

IDEF;

of the attribute class ownership property, a link indicates a depen-
dence of one entity class on the other entity class. The dependent
entity class is considered to be existent dependent since a member of
that entity class cannot exist unless the corresponding member of the
independent entity class exists. In general IDEF] uses links to repre-
sent common types of organizational constraints (sometimes referred
to as business rules) on the information that is managed. It should be
noted that not all of the business rules can be represented with the
standard IDEF| language constructs. In a later section we will de-
scribe a constraint language called the Information Systems Con-
straint Language (ISyCL). ISyCL (pronounced “icicle”) is used to
augment the standard IDEF| language as needed in this report to
capture some of the more complex rules of individual methods.

A link class also has a cardinality associated with it, specifying the
number of members of each entity class that can be involved in a
relationship with a single member of the other entity class. Figure 2.4
shows the syntactic representation of a one-to-zero-or-one relation-
ship. A link with this cardinality represents the fact that one member
of the independent entity class can be associated with zero or one
members of the dependent entity class. However, each member of
the dependent entity class is associated with one and only one
member of the independent entity class.

Independent entity class Dependent entity class
in this relation in this relation
7 7
<
~N
STUDENT | GREEK 1

Figure 2.4 One-to-zero-or-one Link Class

Figure 2.5 shows the syntactic representation of a weak-one-to-many
relationship. In this situation, an independent entity class member can
be associated with zero, one, or many dependent entity class mem-
bers. Again, each member of the dependent entity class is associated

Independent entity class Dependent entity class
in this relation in this relation
7 V4
EMPLOYEE | SBLINGS |

Figure 2.5 Weak-one-to-many Link Class

10

Final Report

Analysis of Methods

IDEF;

with one and only one member of the independent entity class.

Figure 2.6 shows the syntactic representation of a strong-one-to-
many relationship. Here, the independent entity class member must
be associated with at least one instance of the dependent entity class
member. Again, each member of the dependent entity class is asso-
ciated with one and only one member of the independent entity class.

Independent entity class Dependent entity class
in this relation in this relation
7 /
DEPARTMENT | EMPLOYEE |

Figure 2.6 Strong-one-to-many Link Class

Notice that IDEF| does not allow a many-to-many relationship or a
zero-or-one-to-zero-or-one relationship in what is considered a final
model. These relationships make the dependency situation ambigu-
ous. The resolution of such uncertain situations (which often arise in
the early phases of the corresponding analysis) often results in the
analyst determination that the suspected relationship is unsupported
by the analysis data. Alternatively the analyst may discover addi-
tional entity class(es) on which both of the entity classes involved in
the “many to many” relationship are independent (an example of this
is shown in Figure 2.7).

Independent eatity class Dependent entity clase independent entity class
in this relation in this relation in this relation i
7* 7 Vs
EMPLOYEE I EMPL-PROJ-PAIR l PROSECT I

Figure 2.7 Resolution of a Many to Many Relation

Note also that, when specifying a one-to-many link class (either weak
or strong), there is no way of constraining that link to a specific upper
bound (for example, a one to five relationship). Such details are left
to ISyCL if considered absolutely necessary.

2.2.3 Inheritance
Previously we noted that the sharing of attribute classes between two

entity classes was the basis for declaring the existence of a link class
between those entity classes. However, link classes are generally

11

Final Report

Analysis of Methods

IDEF;

suspected (or proposed) by the analyst prior to the discovery of
exactly which attribute classes are shared. IDEF] also places certain
restrictions on which attribute classes may be (and must be) shared
in order for a valid link class to be defined. When a link class is
defined between two entity classes, certain information is shared
between those entity classes. The attribute classes that make up the
key classes of the independent entity class must become attribute
classes for the dependent entity class. It is possible for the inherited
attribute classes to become part of the key class of the depend: t
entity class. In fact, the attributes must become part of the key class
when alink class has a one-to-zero-or-one link cardinality. In the case
of a strong-one-to-many relationship the attributes that are shared
cannot make up a key that would be a subset of the key of the
independent entity class from which they came.

2.3 Metamodel

In this section the metamodel of IDEF] (Figure 2.8) will be described
in detail. Since the metamodels describe the information an informa-
tion system would have to keep about a model, the IDEF) method
has been chosen for use on all of the metamodels.

One caveat about the link class labels used in the metamodels is that
all link class labels have two parts. The first part of the label describes
the relationship between the entity classes from independent to

acts_as_front_iv

{(OBCN, ACN) (ECN) t of (LCID, FRONT, BACK)
defines/owper_of BCN = PRONT LLABEL FLABEL
ORCNe BCN =BA Cardinality |
AT |1 [ENTITY CLASS |2 |acti_ss beck v | LINK_CLASS }3
back_of
occurs_ss/ . individuated_by/
cecurreace o displays/displayer_of owner_of
DECN= BCN

(DECN, TAQ) participates_in/ . (KECN, KCID)
OBCN participent_of contains/user_of
ACN ' <

AC_OCC 4 AC_OCC_IN_KC KEY_CLASS I ¢

in_used_in/
can_be/definer_of key _clan_of z::/_ol
(DECN. TAG) (LCID. FRONT. BACK,
"‘-"""'“:'—“ DECN. TAG. KECN, KCID)
< KECN. KC1D.
LCID. FRONT. BACK
AC_OCC_F_LC I 7 KC_FROM_LC l 3
, causes_migration_of/migrator_of

Figure 2.8 IDEF| Metamodel of IDEF)

12

Final Report

Analysis of Methods

IDEF;

dependent and the second part describes the functional relationship
between the dependent and the independent. In addition, some link
class labels are augmented with “namel = name2.” This associates
the inherited attribute class with the attribute class from which it was
inherited (see Figure 2.8 for examples).

The metamodel of IDEF] has been divided into four logical pieces
to facilitate the explanatory process: 1) entity classes and attribute
classes, 2) link classes, 3) key classes, and 4) attribute classes in key
classes. Each piece will be described in the following sections.

2.3.1 Entity classes and Owned Attribute Classes

The key class of the entity class ENTITY_CLASS is made up of the
single owned attribute class called the Entity Class Name (ECN) (see
Figure 2.9). An entity class defines zero, one, or many attribute
classes. An example of the need for a weak-one-to-many relationship
is that an entity class serving as a dependent entity class in a
one-to-zero-or-one relationship may not define an owned attribute
class.

The entity class AT Tribute CLass (ATTR_CL) is uniquely identified
by its Attribute Class Name (OAN) and the Owner Entity Class Name
(OECN) which defines it. Each entity class is made up af a set of
attribute classes which define the properties for the entity class. This
relationship is defined by the one to zero, one, or many link between
ENTITY_CLASS and Attribute Class OCCurrence (AC_0OOC). The
entity class AC_OCC is uniquely defined by the key class consisting
of two attribute classes: 1) the inherited attribute class Displaying
Entity Class Name (DECN) and 2) the owned attribute class TAG
which represents the label of the attribute class that is to be displayed

(OECN, ACN) (ECN)
defines/owner_of
OECN= ECN
ATR |1 ENTITY_CLASS |2
occurs_as/

occurrence_of displays/displayer_of

é DECN= ECN

(DECN. TAG)
OECN
ACN

AC_OCC |4

Figure2.9 Metamodel of Entity and Attribute Classes.

13

Final Report

Analysis of Methods

IDEF;

in the entity class represented by DECN. The entity class AC_OCC
also contains two inherited non-key attribute classes: OECN and
ACN. These inherited attribute classes contain the information nec-

essary to determine which attribute class this class is an occurrence
of.

2.3.2 Link Classes

A link class represents a binary relationship between two entity
classes as shown by the metamodel of link classes in Figure 2.10. A
link class is uniquely identified by a key made up of three attribute
classes: 1) a Link Class IDentifier (LCID), 2) the independent entity
class participating in the link class (FRONT), and 3) the dependent
entity class participating in the link class (BACK). However, a link
constraint exists that states that every entity class must participate in
at least one link class. This is represented by the following ISyCL
constraint.

for_all e of entity_class ENTITY_CLASS
(for_some | of entity_class LINK_CLASS
(e = front_of(l)
or
e= back_of(l)))

acts_as_from_in/

(ECN) front_of (LCID. FRONT, BACK)
ECN = FRONT < LLABEL, FLABEL
|EcN = BACK Cardinality
ENTITY_CLASS 12 acts_as_back_in/ LINK_CLASS] 3

o-c'l_of
Figure 2.10 Metamodel of Link Classes

The entity class LINK_CLASS contains three additional attribute
classes: 1) the owned attribute class Link LABEL (LLABEL) which
is the label on the link representing the relationship from the inde-
pendent entity class to the dependent entity class, 2) the owned
attribute class Functional LABEL (FLABEL) representing the func-
tional relationship between the dependent and the independent, and
3) an owned attribute class CARDINALITY which keeps track of the
cardinality of the link class. The attribute values that are possible for
the attribute class CARDINALITY include one-to-one, weak-one-
to-many, and strong-one-to-many.

14

Final Report

Analysis of Methods

IDEF

2.3.3 Key Classes

Every entity class ENTITY_CLASS has at least one entity class
KEY_CLASS associated with it. As shown in Figure 2.11, the entity
class KEY_CLASS is identified by the owned attribute class kv
Class IDentifier (KCID) and the inherited attribute class Key Ent:ty
Class Name (KECN). The inherited attribute class contains ihe
information necessary to determine the owner entity class for a given
key class.

In addition, the model must keep track of the information needed to
show which key classes migrated through which link class. This
information is modeled using the entity class Key Class FROM Link
Class (KC-FROM-LC). The key class of the entity class KC-FROM-
LC is made up of both the key class from the entity class
KEY_CLASS and the key of the entity class LINK_CLASS.

(ECN) (LD, FRONT, BACK)
LLABEL, FLABEL

Cardinality

ENTITY_CLASS j 2 LINK_CLASS l 3

(KECN, KCID)

KEY_CLASS |6
is_used_in/
key_class_of :::/ of

Q

(LCID, FRONT, BACK.,
KECN, KCID)

>

KC_FROM_LC] 8

Figure 2.11 Metamodel of Key Classes

2.3.4 Attribute Classes in Key Classes

Key classes are made up of a collection of attribute classes. However
since an attribute class can participate in multiple key classes of a
given attribute class, it was necessary to add the entity class Attribute
Class OCCurrence IN Key Class (AC_OCC_IN_KC) as shown in

15

Final Report

Analysis of Methods

IDEF;

Figure 2.12. The key class for the entity class AC_OCC_IN_KC is
the union of the key classes for the entity classes AC_OCC and
KEY_CLASS for which the entity class AC_OCC_IN_KC'is depen-
dent. In addition, since the attribute classes contained in a key class
can be made up of either owned or inherited attribute class, another
entity class Attribute Class OCCurrence From Link Class
(AC_OCC_F_LC) had to be added to the mode! to record the fact
that a given attribute class migrated across a link class.

(DECN, TAQ) (KECN, KCID)
OBCN
ACN
AC_OCC 4 KEY_CLASS 6

(DECN, TAG)
"’-“"""‘;"-“ DECN, TAG,
<€ KECN, KCID,

LCID, FRONT, BACK
AC_OCC_F_LC 7

Figure 2.12 Metamodel of Attribute Classes in Key Classes
2.4 Strengths and Weaknesses

One of the weaknesses of the IDEF) methodology is the fact that a
modeler cannot talk about attribute values. That is, the methodology
does not allow the modeler to talk about instances of an entity class
and the values of the attributes of an instance of an entity class. Only
the entity class as a whole can be discussed.

2.5 Tips and Traps

The IDEF| methodology is an iterative development process which
is observation based and contains the five following distinct phases:
» Phase 0 — context setting and data collection

* Phase 1 — entity class definition

« Phase 2 — link class definition

* Phase 3 — key attribute class definition

» Phase 4 — non-key attribute class definition

In phase 0, the model’s context, viewpoint, and purpose are estab-
lished. The context describes the subject and the boundary of the
model. The perspective from which to interpret and understand the

16

Final Report

Analysis of Methods

IDEF

model is defined by the viewpoint. The intent and objectives of the
model are defined by the model’s purpose. In addition, the collection
and organization of data about the domain is started. In an IDEF1
model neither an entity class nor an attribute class may be introduced
unless it can be traced back to some data which is either:

» currently managed in the domain, or
* arequirement to be managed in the future in the domain.

The model diagram begins taking form in the entity class definition
phase. In this phase, the modeler defines the candidate entity classes
of the model.

Similarly, in the link class definition phase, the relations between
pairs of entity classes are defined. These relations are inferred from
the entity class definition of the previous phase.

Next comes the definition of the key attribute classes, that is, those
attribute classes that are needed to define the key classes of an entity
class are defined in this phase along with the key classes.

In the last phase, all non-key owned attribute classes are defined for
all of the entity classes.

2.6 Integration With Other Methodologies

Based on the metamodels of each of the methodologies, the IDSE
Research Team is seeking to enable automated model translation.
This allows information represented in one model to be translated
into the equivalent representation in another methodology if one
exists. Consequently, the modeler is able to use multiple methodol-
ogies without having to repeatedly enter equivalent information in
each methodology.

2.7 Conclusions

A brief description of the IDEF] method has been included to help
familiarize and refresh the reader’s knowledge about the method in
order for that he or she may better understand the metamodels
presented in this document. This chapter does not attempt to be an
authoritative description of the IDEF| method. it provides only a brief
and concise description of IDEF].

The metamodel of IDEF) presented serves as an integration platform
that the IDSE Research Team will use in the pursuit of a neutral
information representation schema.

17

Final Report

Analysis of Methods

IDEF

Appendix A. Abbreviations used in the IDEF1 Metamodel
AC_OCC: Attribute Class QCCurrence; an entity class.

AC_OCC_F_LC: Attribute Class QCCurrence from Link Class; an
entity class.

AC_OCC_IN_KC: Attribute Class QCCurrence in Key Class; an
entity class.

ACN: Attribute Class Name,; part of a key class of ATTR_CL.
ATTR_CL: ATTRibute CLass; an entity class.
BACK: synonym for ECN.

DECN: Displayer Entity Class Name; part of the key class of
AC_OCC.

ECN: Entity Class Name; occurs in the first key ‘class of EN-
TITY_CLASS, uniquely identifies an entity class.

ENTITY_CLASS: an entity class.

FRONT: synonym for ECN.

KC _FROM_LC: Key Class from Link Class; an entity class.
KCID: Key Class IDentifier; part of the key class of KEY_CLASS.

KECN: Key Entity Class Name; part of the key class of
KEY_CLASS.

KEY _CLASS: an entity class.

LCID: Link Class [Dentifier; occurs in the key class of
LINK_CLASS, uniquely identifies a link class.

LINK CLASS: an entity class.
OECN: Qwner Entity Class Name; part of a key class for ATTR_CL.
TAG: part of the key class to AC_OCC.

18

Final Report

Analysis of Methods

IDEF;

References

Mayer, R. J., IDEF] - Information Modeling; Theory and Practice,

Department of Industrial Engineering, Texas A&M University,
1988.

Ramey, T. L., Entity Link Key Attribute Semantic Information
Modeling, Internal Technical Report, Hughes Grounds System
Group, Fullerton, CA, October 24, 1985

Menzel, C., and Mayer, R., J., Theoretical Foundations for Informa-
tion Representation and Constraint Specification, Technical Re-

port, Knowledge Based Systems Laboratory, Texas A&M
University, March 6, 1991.

19

IDEF(Q: Method for Function Modeling

Analysis of Methods

his chapter introduces the history and purpose of the Integrated

Computer-Aided Manufacturing ICAM) DEFinition (IDEF)
language IDEF(method. Next, it briefly introduces the syntax and
semantics of the IDEFo method. Finally (and most important) the
paper describes a complete IDEF| metamodel of IDEFg. The purpose
of the metamodel is to act as an integration platform with other
methodologies such as IDEF), IDEF1x, IDEF3, IDEF4, ENALIM,
ER, Data Flow, and Structure Charts.

3.1 History and Purpose

The IDEFp technique is based entirely upon a cell modeling tech-
nique known as the Structured Analysis and Design Technique
(SADT) [Ross 81]. The Air Force Computer Aided Manufacturing
(AFCAM) program in 1973 developed the foundations of the method
through a joint effort with Boeing, and Softech [Buffum 74]. The
method was based on the principles of “Human directed Activity Cell
Modeling” of Dr. Shizuo Hori. Dr. Ross combined these basic
principles with concepts that had evolved from his pioneering work
in software engineering and programming language design to form
in a structured technique for system analysis and a language for
effective communication of the analysis results.

The purpose and philosophy of the resulting method is best stated in
the original development report [Buffum 74] as follows:

Structured analysis is founded on very simple basic
principles that stem from the primary contention that:
To divide is to conquer, providing that it is clear how
the divided pieces are structured together to consti-
tute the whole.

20

Final Report

Analysis of Methods

IDEF)

Repeated application of this principle, with suitably
simple notation, makes it possible to cover any subject
from any point of view to any desired degree of
completeness. The primary discipline quite simply is
that “Everything worth saying about anything worth
saying something about can be said by talking about
six or fewer pieces.” A true believer in these observa-
tions will automatically appreciate structured analysis
but reduction to practice of the full discipline is a
significant challenge. The primary objective of struc-
tured analysis description is to communicate com-
pletely and effectively. It must be clear just what is
being said, and what is meant by what is being said.
As long as clarity is achieved, then both agreement
and disagreement can be accommodated.

The AFCAM program used this technique to build the first functional
architecture of aerospace manufacturing. Following the AFCAM
application Softech continued to evolve the resulting method into a
software design technique. In 1976 the Air Force Integrated Com-
puter-Aided Manufacturing (ICAM) follow on program employed
the commercial version (known as SADT) to build a composite
architecture of manufacturing as the first step in planning the ICAM
program. In 1978 Doug Ross, Clair Feldman, and Richard Mayer
took on the task of reworking the SADT method, cutting out the
design principles and specializing the method to be a technique for:

* enhancing communication among the domain experts.

» performing non-departmentalized functional analysis of large
organizational systems for information integration planning (a’
la Dr. Joe Harrington).

« organizing the thought process of planners and analysts.

The IDEFo method is used for modeling the functions of an organi-
zation (decisions, actions, and activities) and the relationships be-
tween those functions. Since the IDEFp method and syntax
incorporates (for function modeling) many of the early concepts of
structured programming and design, the method supports the follow-
ing principles [Ross 75}:

» the Modularity Principle: break the problem analysis results into
its component parts and formalize the relations (protocol of
interface) between those parts;

» the Abstraction Principle, identify common properties of func-
tions and objects and define new functions or objects which can
stand for classes defined by the common properties.

21

Final Report

Analysis of Methods

IDEF)

 the Hiding Principle: display only the level of detail that is
relevant to the aspect of the model being viewed

 the Localization Principle: group activities or objects together
that function to solve a particular problem.

The graphical language of the IDEFg method supports these princi-
ples by allowing the author of amodel to represent his results in terms
of activity descriptions and the objects which form the relations
between those activities arranged in an hierarchical structure. The
root of this structure summarizes the results at the most abstract/gen-
eral level. Each of the lower level nodes in the final tree structure
provides more specific information than its parent. As the hierarchy
is traversed downward the tree expands, unfolding the details of both
the activities and the objects which form the relations between the
activities. Figure 3.1 illustrates this hierarchical structure aspect of
the syntax of the IDEFo modeling method.

MORE GENERAL

!

This dingram is
the "parent” of v

this dingram.
B MORF PFTAILED

Figure 3.1 Example IDEFo Decomposition

22

Final Report

Analysis of Methods

IDEFg

3.2 Syntax and Semantics

The syntax and semantics of the IDEF(method evolved over many
years through extensive human factors evaluations largely conducted
by Doug Ross. The result is a language that, if used correctly, has
proven capable of expressing functional architectures that are easy to
understand. The following sections describe the basics of the lan-
guage syntax and the “common sense” notion of the use semantics
of this language.

3.2.1 Basic Symbols (IDEFg lexicon)

The fundamental building blocks of the IDEFg method language are
labeled boxes denoting classes of functions (decisions, actions, or
activities) and labeled arrows denoting the conceptual or real objects
that form the relations or interfaces between the activities (Fig-
ure 3.2).

MECHANISM

Figure 3.2 Generalized Function or Activity Box

Two types of diagrams are supported in the IDEFq language “Con-
text” diagrams and “Decomposition” diagrams. A context diagram
displays a single activity box with its associated concepts (see Fig-
ure 3.3). A decomposition diagram displays three to six activity
boxes each with their associated concepts. The decomposition dia-
gram also displays the relations between activities formed out of the
shared concepts between the activities denoted by arrows from one
activity box to another (see Figure 3.4). An IDEFg model is defined

Budget

l

Manufscture
Product

p——- Finished Product

A0

Figure 3.3 Example of a context diagram.

23

—

Final Report

Analysis of Methods

IDEFy

Budget
L
Product Desi
Plan for i
Mumf scturing
Al [
Develop
Schedule
-nd
Budgets
A2 A
Plished Product
Produce >
Product
Routing Stwets

Figure 3.4 Example of a decomposition diagram.

as a context diagram and a set of decomposition diagrams along with
a set of glossary data sheets (one for each IDEFo model element).
From this simple graphical lexicon and the following set of grammar
rules, a model can be developed that is both concise and easily
understood. '

3.2.2 Grammar Rules for Function Descriptions

Figure 3.2 illustrates the basic structure of the representation of a
function or activity in IDEF¢. The position of the arrows entering and
leaving the box represent the classification of the role a concept plays
in its association with an activity. The four roles are input, control,
output, and mechanism (ICOMs). The inputs enter the box from the
left. They represent the concepts that are transformed in the execution
of the function. The concepts serving in the control role enter at the
top of the box. Concepts used as controls are assumed to influence
how the function is performed. Concepts representing mechanisms
are represented by arrows that attach to the box from the bottom. They
represent the means by which the function is accomplished. For
example, trains might be a mechanism of the activity “ship goods”.
The concepts which are represented by arrows that exit the box from
the right represent the results produced by the function.

The IDEFo language grammar requires that each function have at
least one control and one output to be valid. There is no hard limit on
the number of inputs, controls, outputs, and mechanisms that can be
connected with a function, but good practice limitations are four to
six of each. More than four to six is difficult to read and cannot be
drawn legibly by hand or computer (without reduction). Remember
that IDEFo models are not intended to be specifications but rather
vehicles for enhancing communication. If they are made unreadable
by unnecessary clutter then they are generally useless.

24

Final Report

Analysis of Methods

IDEFy

Information about each function in an IDEFo model can come from
seven sources:

* the connotations of the name of the function.

* the position of the function at a level in the hierarchy.

* the glossary associated with the function.

* the concepts associated with the function.

* the parent of the function.

* the relationships of a function to its siblings on a diagram.
* the decomposition of a function into its children.

The IDEFo language provides special syntactic elements for each of
these sources of information. The name of the activity in the box
covers the first. The position of the activity in the hierarchy isencoded
in a unique number associated with each activity box. Each node
number is prefixed with the capital letter “A”. The root node is
numbered with a 0. All the rest of the nodes are numbered with the
number of their parent followed by a number representing their
relative position with their siblings (see Figure 3.5). A textual glos-
sary entry is associated with each activity (and concept). The concepts
associated with an activity can be determined directly from the
diagram. The source/sink of those concepts if local to the diagram
can be traced on that diagram. If the source/sink is from the parent
diagram then a code (called an ICOM code) provides the documen-
tation for traceability to the parent level. Thus it is the physical arrows
and ICOM codes that allow the communication of information rela-
tive to the relationship between individual (or groups of) activities.
The description of an activity is not actually considered to be captured
in the text but rather in the decomposition diagram associated with
that activity. Every activity can be decomposed into three to six
functions. This range was chosen (again for human factors consider-
ations) to prevent a function from being described in too much or too
little detail. Each time a decomposition occurs it is supposed to
contain a detailed description of the parent function. Starting at the

AN
A

Al A2 Al3

Al131 A132 A133 Al34

Figure 3.5 Example of the node numbering schema.

25

Final Report

Analysis of Methods

IDEFy

top, the process is recursive with each new level of decomposition
giving more detail about an activity is to better describe the processes
that occur. Again, Figure 3.1 illustrates the idea of decomposition
into greater levels of detail. This characteristic of IDEFo is consistent
with hierarchical, top-down design approaches using refinement
techniques.

3.2.3 Concepts

A concept is a piece of information, knowledge, data or physical
object that is produced and/or consumed by an activity in an IDEF
model. The term concept is used to include both tangible and intan-
gible items. That is, concepts can be either actual things (e.g.,
documents and machined parts) or abstract ideas (e.g., production
capacity, experience, problems, or sales quotas). This allows IDEFg
to model enterprises in many different domains. A key capability of
the IDEFo method and language is its support for the representation
of the internal structure of these relation forming concepts. Concepts
can divide and combine to form other concepts. A concept can split
into two copies or spread into two different concepts. Also, two
copies of a concept can join into a single copy or two different
concepts can merge into a single concept. This capability of IDEFg
allows complex relationships between activities to be represented.
Figure 3.6 shows an example of concepts spreading, splitting, join-
ing, and merging.

1>
v

Cm(AUB)

A
A \ A
-
>
A
B \ Co(aUR)
>

Figure 3.6 ICOM Spread, Split, Joint, and Merges

26

Final Report

Analysis of Methods

3.3 Metamodel

The following is a discussion of the IDEF| metamodel of IDEFg. The
metamodel is intended to capture the information managed in an
IDEF¢ model. Syntactic structures which can be directly generated
from this information are not included in the metamodel. Therefore,
for example, there will be no references to arrows in the metamodel
since they can be reconstructed knowing the relations between the
activities, and what concepts form these relations. Similarly the
derivable information such as ICOM codes and activity numbers do
not appear in the metamodel. These are artifacts of the diagram and
not part of the information that is modeled. Also, the metamodel does
not attempt to model real world processes described by an instance
of an IDEF¢ model. It models only the information managed in the
method.

The IDEF) metamodel of IDEF¢ as shown in Figure 3.7 will be
divided into four logical units to facilitate the discussion of the

comming «ts_ss_producer_in/
f
(MID) | = & ownerof (ACT®)] o (PD)
MID = Envh Envioaren ACTS = Producer Producer
* Label Consmres
Activity_Glosssry ACT® « Consurrves, | Consumer_Role
t 1 3
MODEL K acviy | - o PATH
consemer_of
occars_sy cwner_of
occurrence_of -
umun:" owny (ACT®) {PID, LID)
e owner_of Comext
ACT#® = Consext
ACT _occ_|_DEC { 4 LINK occ_j_PATH 3
contalny
conmnt_of
containy
(CID. MID. 3ID) {Conmxt) conmxt_of
Smws
—O kp y Teat
CONCEPT_n_INV | 6 [DEcommosTon. |7
corealew
ocomrs_se/ owner_of
-of \ / sewocisted _withiconcept_of
(CID) {CTD. $ID. OCCH ___. 1Sy
Nare occers_sy Context Cip
Concapt_Glosesry ;‘“___(""""'—‘":> comsiny :mtﬂl
~ ownerof | e
CONCEPT 9 CONCEPT_insTR |10 [o- STRUCTURE "
l scte_nn_focus_infocws_of Q
contain/owrer_of

Figure 3.7 IDEF; Metamodel of IDEFo

27

Final Report

Analysis of Methods

IDEFo

metamodel. The first logical unit will cover activities and the decom-
position of activities. Next, the idea of structures and concepts will
be introduced. Next, links will be presented. Finally, the idea of links
and paths will be discussed.

3.3.1 Activities and Decompositions

The metamodel portion for activities and decomposition is shown in
Figure 3.8. In IDEFo an activity carries the information relative to
the environment (the model at the most abstract level) in which it
belongs. Each activity may or may not have a decomposition as
represented by the one-to-zero-or-one link class from the ACTIVITY
entity class to the DECOMPOSITION entity class. The key class of
the parent activity of the decomposition serves as the key class of the
DECOMPOSITION entity class.

owayownee_of e
ACTS = Context
(ACT®) occar_sv (ACT™) (Conmat)
Environment occmrrence_of Comext l':‘ of Somr
Labe! < o Raplarwiory_Teat
Activity_Clomery
ACTIVITY) ACT _occ_)_DBC 4 DECOMPOSITION 7

Figure 3.8 Metamodel of Activities

Each activity may participate in one and only one decomposition.
This is because, by definition, an IDEFo model is a rooted acyclic
tree with the root activity not occuring in any decompositions. Thus,
the one-to-zero-or-one link class from the ACTIVITY entity class to
the ACTIVITY _occ_i_DEC (activity occurrence in decomposition)
entity class represents the fact that an activity may or may not be
contained in a decomposition.

The strong one-to-many link class from the DECOMPOSITION
entity class to the ACTIVITY_occ_i_DEC entity class represents the
fact that if an activity has a decomposition then the decomposition of
the activity must contain between three and six activities. This
constraint is represented by the following ISyCL statement:

for_all d of entity_class DECOMPOSITION
(3 <= (length (contains(d)))) and ((length (contains(d))) <= 6)

3.3.2 Structures and Concepts

In trying to model the spreads, splits, joins,and bundles in IDEFo, a
new construct called a structure was introduced into the model. The
small numbered squares in Figure 3.9 represent structures. Every
spread, split, join, and merge occurs at a structure. Structures are

28

Final Report IDEFy

o |
L»
L
2
=
3 L 4) 3 u [
55 3 &3 mill
Ls
1 s
3
sl 1y
Q
9
=
n)
10 G il
0

Figure 3.9 An example of structures

connected by links which, when chained, form a path between
activities. Structures also occur at boundaries of a decomposition
diagram to model flows into and out of the decomposition. Thus, all
paths begin and end at a structure that is located at an activity or on
the boundary of a decomposition.

Concepts are modeled by the CONCEPT entity class as shown in
Figure 3.10. The CONCEPT entity class has an owned attribute class

comalng
ownet_of
(CID. MID. $1D) (Conmxt)
O Smwe containey’
Axplanatory_Test conmat_of
CONCRPT _in_ENY 6 DECOMPOSTION 7
conmainy
secars_sy owner_of
occumenos_of
y
(©€D) (CID. $SID. OCCH S
Name oxours_aw Comtest cm
occerrence_of
Concapt_Closmey 1 - C comsiny Comert
Nole
o~ Owner_of
CONCEPT 9 CONCEFTin_sTR |10 (Lo smucTure n
, acty_as_focus_lvfocws_of Q
contalra/owner_of

Figure 3.10 Metamodel of Concepts and Structures

Analysis of Methods 29

Final Report

Analysis of Methods

IDEFo

NAME and a unique concept identifier (CID) symbol acting as the
key class for the CONCEPT entity class. In addition, a CONCEPT
entity class has an owned attribute class CONCEPT_GLOSSARY.

A concept can participate as the defining or focussing concept of zero,
one, or many structures. The defining concept is the primary concept
associated with a structure in a spread, split, join, or bundle. The
CONCEPT entity class can be associated with zero, one, or many
occurrences of the STRUCTURE entity class.

A STRUCTURE entity class also contains information about the
context (decomposition) where the structure is located and a unique
key identifying the structure (SID). In addition, a STRUCTURE
entity class contains the owned attribute class ROLE. This attribute
class specifies whether the structure is serving as a spread, split, join,
or merge. If the structure is used as a spread, split, or pass-through
(e.g., as in tunneling), the defining concept is the concept entering
the structure. If the structure is used as a join or merge then the
defining concept is the concept leaving the structure.

The concepts defined by the focus concept of a structure are modeled
by the CONCEPT_in_STR (concept in structure) entity class. Since
the same concept may exit or enter a structure multiple times, the key
class ofthe CONCEPT_in_STR contains the focus concept identifier,
the structure identifier, and a unique occurrence number. For exam-
ple, a “distribute product” activity may produce an output that links
to two activities. The output “product” may be used as input by both
a “market product” activity and a “use product intemnally” activity.

The final entity class CONCEPT_in_ENYV (concept in environment)
in Figure 3.10 is used to model tunneled concepts. A tunneled concept
is one that does not exist on the parent or child (decomposition)
diagram of the current decomposition. That is, the concept skips a
level and ‘tunnels’ into another level. Figure 3.11 shows how tunnels
are represented graphically with tunneling into the child diagram
(signified by parenthesis on the arrows near the activity box) on the
left and tunneling into the parent diagram (signified by parenthesis
on the arrows at the ends) on the right. The key class of the CON-

b |
i I

Figure 3.11 ICOM Tunneling Graphical Syntax

30

Final Report

Analysis of Methods

IDEFy

CEPT_in_ENV entity class is made up of the concept identifier, the
model identifier, and the structure identifier.

3.3.3 Links

A link always starts and ends at a structure; therefore they have been
modeled by the metamodel portion shown in Figure 3.12. The LINK
entity class contains the starting and ending structures as attributes.
In addition, the LINK entity class contains an attribute indicating the
concept associated with this link. The key class of the LINK entity
class is LID which is a unique symbol to identify a LINK entity.

acts_as_smet_ley
sart_of

(€D) amocieted _wity

! (SD)
Nerrs concage_of

co
Cortant

o

acts_ss_end_Iry
ond_of

Figure 3.12 Metamodel of Links
3.3.4 Paths

A path relates a producer activity to a consumer activity. Each
concept plays a role in the relationship between the two activities.
The consumer role can either be a control, an input, or a mechanism.
Consequently, the PATH entity class has two weak one-to-many link
classes with the ACTIVITY entity class as shown in Figure 3.12. The
links represent the producer and consumer activities for this path. The
producer and consumer of the path are kept as attributes of the PATH
entity class along with an attribute containing the consumer role of
the path. Since multiple paths can exist between two activities, the

key class of the PATH entity class is made up of a unique symbol
(PID).

acts_se_producer_ky

_of

(ACTH) om)
Lmironmen ACTS = Producer Producer
Labet Consumer
Activity Olosmry ACTS u Consurmar Conservwr_Role
A I : as [PATH h

eov-r;m_o'
Figure 3.13 Metamodel of Paths

Additionally, Figure 3.14 shows the portion of the metamodel that
describes how a collection of links make up a path. Since a link can
be a part of many paths (consider a concept flow before it spreads
into two separate concepts), the LINK_occ_i_PATH (link occur-

31

Final Report

Analysis of Methods

IDEFp

(PID) containy am
Producer ower_of (12
Coanamer __—q Start
Cansumer_Role End
PATH 3 LINK occ_i_PATH LINK I L]

Figure 3.14 Metamodel of Link occurrences in Path

rence in path) entity class is used to represent the situation in which
alink is used as part of a path.

3.4 Strengths and Weaknesses of IDEFo

The primary strength of IDEFo is that the method has proven effective
relative to its original structured analysis communication goals for
function modeling. Activities can be described by their inputs, out-
puts, controls, and mechanisms. Additionally, the description of the
activities of a system can be easily refined into greater and greater
detail until the model is as descriptive as necessary for the decision
making task at hand. In fact, one of the noticed problems with models
created using IDEFyg is that they often are so concise that unless a
reader is an expert in the domain or participated in the model
development he (she) will not be able to understand the system that
is modeled in the diagrams. The hierarchical nature of IDEFo facili-
tates the ability to construct (“AS IS”) models which have a top-down
representation and interpretation but which are based on a bottom-up
analysis process. Beginning with raw data (generally interview re-
sults with domain experts) the modeler starts grouping together

 activities that are closely related or functionally similar. Through this

grouping process the hierarchy emerges. If an enterprise functional
architecture is being designed (often referred to as “TO-BE” model-
ing), top-down construction is usually more appropriate. Beginning
with the top-most activity, the “TO BE” enterprise can be described
via a logical decomposition. The process can be continued recur-
sively to the desired level of detail. When an existing enterprise is
being analyzed and modeled, observed activities can be described
and then combined into a higher level activity. This process also
continues until the highest level activity has been described.

One problem with IDEF is the tendency of IDEFo models to be
interpreted as representing a sequence of activities. While IDEFy is
not intended to be used for modeling activity sequences, it is easy to
do so. The activities may be placed in a left to right sequence within
a decomposition and connected with the flows. It is natural to order
the activities left to right because if one activity outputs a concept
that is used as input by another activity, drawing the activity boxes
and concept connections is clearer. Thus, without intent, activity
sequencing can be imbedded in the IDEFp model. In cases where

32

Final Report

Analysis. of Methods

IDEF)

activity sequences are not included in the model, readers of the model
may be tempted to add such an interpretation. This anomalous
situation could be considered a weakness of IDEFo. However, to
correct it would result in the corruption of the basic principles on
which IDEFy is based and hence lose the proven benefits of the
method. The abstraction away from timing, sequencing, and decision
logic allows the conciseness in an IDEFo model. It also contributes
to problems with understanding by readers outside the domain. This
particular problem has been addressed with a complementary mod-
eling method called IDEF3.

3.5 Integration With Other Methodologies

The IDEFp method metamodel is in the process of being integrated
with several other method metamodels. The final result of this
integration is incomplete, but some discoveries have been made. The
metamodels for IDEF(and Data Flow Diagrams are very similar even
though the purpose of the two methods is very different. IDEFy is
intended to model activities while Data Flow Diagrams are intended
to model the flow of information. However, it turns out that the
information used by each of the methods is quite similar in structure.
This similarity will require careful analysis to determine exactly how
similar the metamodels are and how they may overlap.

As a counter example, IDEF¢ and Structure Charts are two methods
that are also very similar in purpose. Their metamodels, however, are
not alike at all. Structure Charts model the hierarchy of processes but
do not represent their interconnectivity. While IDEF also represents
hierarchical decomposition, its metamodel contains much more in-
formation about the activities by virtue of the inclusion of concept
flows. Integration of these two methods will also require careful
analysis, but will likely have large parts of the metamodel that do not
overlap.

3.6 Conclusions

This chapter has presented a brief description of the IDEF modeling
method. Also, an IDEF| model of IDEF(has been described. By
carefully describing the IDEFg metamodel. it is hoped that the
information used by IDEF(can be integrated with the information
used by other modeling methods. Current work by the IDSE research
team is progressing towards this goal.

33

Final Report

Analysis of Methods

IDEFp

Appendix A. Abbreviations used in the IDEFg Metamodel
Activity: an entity class.

Activity_Glossary: owned attribute class of Activity, a glossary entry
which carries information about the activity and it’s function.

Activity_Occ_I_Dec: Activity Occurrence In Decomposition; an en-
tity class.

ACT#. ACTivity number; occurs in the key class of Activity,
uniquely identifies an activity.

CID: Concept [Dentifier; occurs in the key class of Concept, uniquely
identifies a concept.

Concept: an entity class.

Concept_Glossary: owned attribute class of Concept, a glossary entry
which carries information about the concept and it’s function.

Concept_In_Env: an entity class.
Concept_In_Str: an entity class.

Context: the key class of the parent activity of the decomposition,
which serves as the key class of Decomposition.

Consumer: attribute class of Path which identifies the consumer
activity.

Consumer Role: attribute class of Path which identifies the role the
consumer activity plays.

Decomposition: an entity class.
End: attribute class of Link which identifies the ending structure.

Environment. attribute class which carries information relative to the
environment (the model at the most abstract level) in which the
activity belongs.

Explanarory_Text: attribute class of Decomposition containing doc-
umentation on this entity class.

LID: Link IDentifier: occurs in the key class of Link. uniquelv
identifies a link.

Link: an entity class.
Link_Occ_I_Path: Link Occurrence In Path; an entity class.
Model: an entity class.

MID: Model [Dentifier; occurs in the key class of Model, partially
identifies a model.

34

Final Report

Analysis of Methods

IDEFy

Name: attribute class of Concept which captures the name of the
concept.

Path: an entity class.

PID: Path IDentifier; occurs in the key class of Path, uniquely
identifies a path. '

Producer: attribute class of Path which identifies the producer activ-
ity.

Role: attribute class of Structure which identifies whether a structure
serves as a spread, split, join or merge.

SID: Structure IDentifier; occurs in the key class of Structure,
uniquely identifies a structure.

Start: attribute class of Link which identifies the starting structure.

Structure: an entity class.

35

Final Report

Analysis of Methods

IDEF)

References

Buffum, H,.E,“Air Force Computer-Aided Manufacturing
(AFCAM) Master Plan”, Volume I1I Analytic Tools, AFML-TR-
74-104, AFWAL/MLT, WPAFB, OH, 45433.

Ross, Douglas T., “PLEX1: Sameness and the need for rigor, and

PLEX2: Sameness and type” Intemal Technical Report, Softech
Inc., 1975.

Ross, Douglas T., “Software Engineering: Process, Principles, and
Goals”, Computer, May 1975.

Ross, Douglas T., “Structured Analysis(SA): A Language for Com-
municating Ideas”, IEEE Transactions on Software Engineering,
January 1977.

SofTech,“Integrated Computer-Aided Manufacturing (ICAM) Func-

tion Modeling Manual (IDEFg)”, Technical Report UM
110231100, June 1981.

36

ENALIM: Conceptual Schema Design

Analysis of Methods

his chapter serves a dual purpose. First, it attempts to describe
T succinctly the Evolving NAtural Language Information Model
(ENALIM) by discussing the history, purpose, syntax, semantics,
advantages, and disadvantages of the method. Second, this chapter
serves as an integration platform by presenting an Integrated Com-
puter-Aided Manufacturing ICAM) DEFinition (IDEF) language
IDEF1 metamodel of ENALIM and compares common structures of
its metamodel with the metamodels of other methods which include
IDEFo, IDEF|, IDEF|x, ER, and Data Flow Diagrams.

4.1 History and Purpose

- An information system consists of three major components:

* functions that retrieve, add, delete, and modify the information
base.

* an information base that stores facts about the information Sys-
tem.

* aconceptual schema that contains the rules that describe which
information may enter and reside in the information base. It also
describes the semantics of the elements in the information base.

A general architecture for an information system (ISO 82] is shown
in Figure 4.1. The information system receives a message. The
message can either retrieve, add, modify, or delete a piece of infor-
mation from the information base. The information processor re-
ceives the message. The conceptual schema controls the information
processor by describing the allowable sentences which may enter the
information base. Finally, the information base generates an appro-
priate message describing the contents of the information base.

37

Final Report

Analysis of Methods

ENALIM

==

Figure 4.1 A General Information System

In the middle 1970’s, Dr. G. M. Nijssen, head of the International
Federation of Information Processors (IFIP), developed the concept
that information systems are a simplified model of human commu-
nication. Consequently, the communication between the environ-
ment (the user or application) and the information system can be
viewed as a set of natural language sentences for analysis purposes.
Using this idea, Nijssen developed the modeling technique of EN-
ALIM for capturing the information needed to design/populate con-
ceptual schemas. ENALIM (today referred to as the Object Role
Method) is available today as a part of an information analysis
methodology called NIAM (Nijssen Information Analysis Method-

ology).
4.2 Syntax and Semantics

An ENALIM model is made up of three constructs: 1)object types,
2) fact types, and 3) constraints. An object type is a collection of
objects grouped together in order to be compared. Object types can
be further classified as NOLOTs (NOn Lexical Object Types) and
LOTs (Lexical Object Types). These two classification will be de-
scribed in more detail in sections 4.2.1 and 4.2.2, respectively. A fact
type, which is an association (fact) between two objects, will be
described in section 4.2.3. In addition, the constraints (integrity rules)
which place restrictions on the population of object types and fact
types have been divided into two sections: role constraints and
subtype constraints. They will be discussed in section 4.2.4 and
section 4.2.5, respectively.

4.2.1 NOLOT (NOn Lexical Object Type)

A NOLOT is an ENALIM object type which denotes a concept or
physical object perceived in the universe of discourse but which
cannot be directly processed by an information system. The real
world objects represented by NOLOTs are presumed to have an

38

Final Report

Analysis of Methods

ENALIM

existence independent from a particular naming convention, (i.e. they
are not readable or printable). A NOLOT is represented graphically
by a circle containing the name (Figure 4.2).

.@

Figure 4.2 Examples of NOLOTs

Two NOLOTs can be related by a subtype (‘‘is a’’) link. A subtype
link is represented graphically by a directed line segment pointing
from the subtype to the supertype. The interpretation of the subtype
link is that instances of the subtype are instances of the supertype. An
instance of the subtype inherits all of the properties of the supertype.
The subtype link structure resulting from a model must be acyclic,
hence it forms a tree structure. If a tree is made up of n NOLOTs,
then the tree is called an n-NOLOT family. A 3-NOLOT family is

shown in Figure 4.3.

Figure 4.3 An example of a 3-NOLOT family

4.2.2 LOT (Lexical Object Type)

A LOT is an ENALIM object type that represents a real world object
which can be passed to and from the information system. This implies
that objects represented by LOTs are processable (readable and
printable) by the information system. A LOT can refer to, identify,
or name a NOLOT. A LOT is represented graphically by a dashed
circle containing the name of the LOT as in Figure 4.4.

4.2.3 Fact Types

A fact type is an association (fact) between two object types. Each
object type in a fact type association is said to play a role. A fact type

39

Final Report

Analysis of Methods

ENALIM

- - -——

7’ ~ 7 ~

N -/ Social ©

! Family I Security |

\ Name , ! Number ,
S N -
Figure 4.4 Examples of LOTs

is graphically represented by two adjacent rectangles with a line
extending from each rectangle to the object associated with the role
contained in that rectangle. The only allowable fact types are idea
types and bridge types. An idea type is a fact type between two
NOLOTs (Figure 4.5). A fact type between a NOLOT and a LOT is
called a bridge type, as shown in Figure 4.6.

husband wife Woman

Figure 4.5 An example of an idea type

/ Social
Person with of p—— Security ,
\Number /

-

Figure 4.6 An example of a bridge type

4.2.4 Role Constraints

The role constraints place restrictions on the population of object
instances for a particular set of roles. The role constraints are the
identifier, role uniqueness, total role, role equality, role exclusion,
and role subset constraints. These role constraints will be discussed
in sections 4.2.4.1 through 4.2.4.6.

4.2.4.1 Identifier Constraint

An identifier constraint (uniqueness constraint or “only one” con-
straint) declares that a set of object role pairs uniquely identifies an
instance of the fact type. An identifier constraint is graphically
represented by a dashed line with arrows on both ends ranging over
a set of roles in a fact type. In the simple case of binary relationships,
four types of identifier constraints are possible: 1) one-to-one, 2)
synonym, 3) homonym, and 4) syno-homonym.

40

Final Report

Analysis of Methods

ENALIM

The one-to-one identifier constraint declares that either object in-
stance in the constrained fact type can be used to identify the other
object instance, and vice versa. In other words, there exists a one to
one relationship of an object instance of one role to an object instance
of another role, as depicted in Figure 4.7.

Figure4.7 A man and a woman participate in only one mar-
riage (monogamy).
The synonym identifier constraint states that an object instance of the
first role uniquely identifies an object instance of the second role.
Consequently, the synonym identifier constraint represents a one to
many relationship from the first object type to the second object type
(Figure 4.8).

oo

husband wife

Figure 48 A man can have multiple wives, and a woman
can have only one husband (polyandry).

The homonym identifier constraint asserts that an object instance of
the second role uniquely identifies an object instance of the first role.
As illustrated in Figure 4.9, a many to one relationship exists between
the object type MAN and the object type WOMAN.

husband wife

Figure 4.9 A woman can have multiple husbands, and a
man can have only one wife (polygyny).

Finally, the syno-homonym identifier constraint states that neither an
object instance of the first role nor an object instance of the second
role is enough to identify the other object instance. The syno-hom-
onym identifier constraint represents a many to many relationship

from the first object type to the second object type as shown in Figure
4.10.

41

Final Report

Analysis of Methods

ENALIM

husband wife Woman

Figure 4.10 A man and a woman may participate in multiple
marriages (polygamy).

4.2.4.2 Role Uniqueness Constraint

The role uniqueness constraint specifies that the combination of two
or more roles uniquely identifies an object. The role uniqueness
constraint is graphically represented by the letter “U” inside of a circle
with dashed lines extending from the circle to each role participating
in the constraint. As depicted in Figure 4.11, the first name and the
last name uniquely identifies an employee.

/ AY
. § First
with of \ Name |/
T \ /
] N - - s
. - ey
] / g D N\
. { Last
with of \ Name !
\ /
~ Pl

-

Figure 4.11 A role uniqueness constraint example
4.2.4.3 Total Role Constraint

The total role constraint (“always” constraint) states that there must
be an instance of the role for every object type playing that role. This
constraint is represented graphically by the universal quantifier sym-
bol appearing on the line between the object type and its role. The
total role constraint that a person always has a gender is represented
in Figure 4.12.

Person v with of

Figure 4.12 A total role constraint example
4.2.4.4 Role Equality Constraint
The role equality constraint states that the set of instances of two roles

must be equivalent. The role equality constraint is graphically repre-

42

Final Report

Analysis of Methods

ENALIM

sented by the equal sign, “=", inside of a circle in the middle of a
dashed line segment connecting two roles. An example of a role
equality constraint is represented in Figure 4.13, which states the set
of employees working for a department is equivalent to the set of
employees earning a salary.

working for | employing (e
)
Employee @
L]
]
earns is paid to

Figure 4.13 A role equality constraint example

4.2.4.5 Role Exclusion Constraint

The role exclusion constraint prescribes that the set of instances of
two roles must be mutually exclusive. In other words, an instance of
one role cannot appear as an instance of another role. The role
exclusion constraint is represented graphically by the letter “X”
inside a circle in the middle of a dashed line segment connecting the
two roles. As depicted in Figure 4.14, the set of persons eaming a
salary is disjoint from the set of persons owning a shop.

SRl >
eams is paid to
'
Person ®
]
]
owning owner
IO >

Figure 4.14 A role exclusion constraint example

4.2.4.6 Role Subset Constraint
The role subset constraint states that the set of instances of one role

must be a subset of the set of instances of another role. The role subset
constraint is represented graphically by a directed dashed line seg-

43

Final Report ENALIM -

ment pointing from the subset to the superset. In Figure 4.15, the
example states that the set of employees assigned to a project is a
subset of the set of employees working for a department.

working for | employing P -

]

]
Employee +

'

{

assigned to done by

Figure 4.15 A role subset constraint
4.2.5 Subtype Constraints

Subtype constraints restrict the population of the object instances of

a supertype into populations of the participating subtypes. The two

types of subtype constraints are the subtype exclusion constraint and -
the subtype total constraint. These constraints will be discussed in
section4.2.5.1 and 4.2.5.2, respectively.

4.2.5.1 Subtype Exclusion Constraint

The subtype exclusion constraint declares that the set of instances of -
one subtype are mutually exclusive from the set of instances of

another subtype. In algebraic terminology, the intersection of the set

of instances of one subtype with the set of instances of another -
subtype is the empty set. The subtype exclusion constraint is repre-

sented graphically by the letter “X” inside a circle with dashed line

segments connecting the circle to each subtype link participating in -
this constraint. As illustrated in Figure 4.16, the subtype man of

person is mutually exclusive from the subtype woman of person.

Figure 4.16 Subtype exclusion constraint example

Analysis of Methods :) 44

Final Report

Analysis of Methods

ENALIM

4.2.5.2 Subtype Total Constraint

The subtype total constraint states that the total of all of the instances
of one subtype with all of the instances of another subtype make of
the set of instances contained in the supertype. In algebraic terminol-
ogy, the union of the set of instances of one subtype with all of the
instances of another subtype make up the set of instances contained
in the supertype. The subtype total constraint is graphically repre-
sented by the letter “T” inside of a circle with dashed line segments
connecting the circle to each subtype link participating in the con-
straint. An example of a subtype total constraint is the population of
men and the population of women which together make up the
population of the supertype people, as depicted in Figure 4.17.

Figure 4.17 A subtype total constraint example

4.3 Metamodel

This section describes an information model of ENALIM (Fig-
ure 4.18). IDEF) is used to model the information contained in an
ENALIM model. This information model is referred to as a
metamodel. To facilitate the explanation process, the metamodel has
been divided into five logical units: 1) NOLOT families, 2) fact types,
3) total role constraints, 4) subtype constraints, and 5) role con-
straints. The following sections fully describe each of these logical
units.

4.3.1 NOLOT Families

The portion of the metamodel that models NOLOT families is shown
in Figure 4.19. The entity class OBJECT keeps all of the information
about objects. The attribute class OTYPE specifies whether the object
is a LOT or a NOLOT. The attribute class ONAME is the name of
the object and acts as the key class for this entity class. An additional

45

Final Report

Analysis of Methods

ENALIM
acts_as_class_in/
(D) alized_by/ (ONAME) clase of Y (Cress sibciann)
mmn_ci OTYPR ONAME = Class
P ONAME = Setclams 0
TOTAL ROLEC |1 OBJECT] 2] s _as_sabsclass_iny SUBTYPE 3
subclass_of |
occurs/ participates_in/
ocoarence_of subtype_of
(SCID,Clase, Subclnas)
ST_u_i_STC l 6
constraing
conatrained _by
(SCID)
SC_TYPE
ROLE_CONST |7 [Tomruime s SUBTYPE_CONST |9
Figure 4.18 IDEF; Metamodel of ENALIM
1 lass_of
(ONAME) bt <> (Claas, Subclass)
OTYPE ONAME = Cises
ONAME = Subciam 0
OBJECT 2 acts_ss_subclass_in/subclass_of SUBTYPE 3

Figure 4.19 Metamodel of NOLOT families

constraint is required to prevent LOT participation in subtype rela-
tions. This constraint is represented by the following ISyCL state-
ment:

for_all s of entity_class SUBTYPE
(OTYPE(class_of(s)) = 'NOLOT)
and

(OTYPE(subclass_of(s)) = 'NOLOT)

The entity class SUBTYPE has as its key class the name of the two
NOLOTS contained in this subtype link. This implies that only one
subtype link can exist between two individual NOLOTSs. An addi-
tional link constraint is needed to state that a NOLOT cannot be a
subtype of itself and that no matter what NOLOT you visit in a
NOLOT family, a path will not exist along the subtype links that will
return to the starting NOLOT. In other words, a NOLOT family is a
directed acyclic graph. These constraints are represented by the
following ISyCL statements:

46

Final Report ENALIM

function superclass?(obj1, obj2):boolean
“Is OBJ2 a superclass of OBJ17?"
[(obj1 <> obj2)
and
(for_some s of entity_class SUBTYPE
(class_of(s) = obj1)
and
(subclass_of(s) = obj2))
and
(for_some s of entity_class SUBTYPE where (class_of(s) = obj1)
superclass?(subclass_of(s), obj2))]

for_all s of entity_class SUBTYPE
"No non-acyclic graphs”
not (superclass?(subclass_of (s), class_of(s)))

4.3.2 Fact Types

As shown in Figure 4.20, every object in a model belongs to at least
one object role pair (OBJ ECT _ROLE_P). The entity class OB-
JECT_ROLE_P contains the object name, ONAME, and the role
name, RNAME, belonging to this OBJECT_ROLE_P. An entity of
the entity class OBJECT_ROLE_P is identified by the key class PID,
which is a unique symbol. A fact type is made up of two object role
pairs. Each fact type has an identifier-type attribute class whose
attribute value may be either one-to-one, synonym, homonym, or
syno-homonym. A link constraint exists that states that the object
type of the two object role pairs participating in a fact type cannot
both be LOTs. The only allowable combinations are between a
NOLOT and a LOT, which is called a bridge type, or between two
NOLOTs, which is called an idea type. This constraint is represented
by the following ISyCL definition:

for_all f of entity_class FACT_TYPE

not(for_all p in contains(f, OBJECT_ROLE_P)
(OTYPE(ONAME(p)) = 'LOT))

(FTD) containe/ (ONAME)
Mdentifier_type contsined_by | OTYPE
FACT_TYPE l 4 OBJECT _ROLE_P OBJECT

Figure 4.20 Metamodel of fact types

4.3.3 Total Role Constraint

The total role constraint is modeled by the one-to-zero-or-one link
class from entity class OBJECT_ROLE_P to the entity class

Analysis of Methods 47

Final Report

Analysis of Methods

ENALIM

TOTAL_ROLE_C (Figure 4.21). The total role constraint is modeled
as a separate entity class to avoid violating the no null rule of IDEF,,
because not every OBJECT_ROLE_P has a total role constraint. The
key class of the total role constraint is the key class of the OB-
JECT_ROLE_P that it is associated with it.

®ID) D)
spacialized_by/owner_of (ONAME,RNAME,
~ FTID)
g
TOTAL_ROLE_C || OBJECT_ROLE_P |s

Figure 4.21 Metamodel of total role constraint

4.3.4 Subtype Constraints

The subtype constraints of subtype exclusion and subtype total have
been modeled in Figure 4.22. Since a subtype link can appear in
multiple subtype constraints and a subtype constraint is made up of
multiple subtype links, the entity class ST_u_i_STC (subtype use in
subtype constraint) was added to the model.

(Class, Subclass) participases_in/ (SCID,Clase, Subclass) (SCID)
subtype_of 0 SC_TYPE
SUBTYPE 3 | [suBTvre_consT]9

Figure 4.22 Metamodel of subtype constraints

4.3.5 Role Constraints

The role constraints are modeled in Figure 4.23. The role constraints
include the joint uniqueness, role equality, role exclusion, and role
subset constraints. The entity class ORP_u_i_RC (object role pair
used in role constraint) shows the pairwise relationship between a
role constraint and each object role pair participating in this role
constraint. This entity class was added to the model since an object
role pair can participate in many role constraints and a role constraint
is made up of many object role pairs.

®CD) consmaing’ (PIDRCID) cccurst (®ID)
Conetraint_type constrained_by occurrence _of {ONAME.RNAME,
*-'. 0-‘- FID)
ROLE_CONST |7 ORP_u_i RC | | oBXECT ROLE_P] s

Figure 4.23 Metamodel of role constraints

48

Final Report

Analysis of Methods

ENALIM

4.4 Strengths and Weaknesses

Possibly the greatest strength of ENALIM is the fact that it embodies
a representation of both the real world objects and their relations
along with the data objects and relations into a single integrated
syntax. If one takes the meaning of “semantic data model” to be the
documentation of the link between the data in an information system
and the “things”/“situation” represented by that data in the real world,
then ENALIM is the only method we have studied that actually
captures both aspects unambiguously.

IDEF| clearly distances itself from the representation of objects in
the real world (i.e. entity classes like “employee” do not represent
real world people but other collections of information presumably
about the real world object named by the entity class). Both IDEF|x
and ER conflate the two, thus making it impossible to tell if an
“entity” (in IDEF1x) or an “entity set” (in ER) is intended to represent
the object itself or the information about that object. ENALIM, with
its clear distinction between LOTs and NOLOTs was the first (and
to date only) method to grapple with trying to simultaneously repre-
sent and keep both coricepts distinct.

ENALIM’s strength resides in the fact that it is based on the deep
structure of sentences. The rich set of constraints gives ENALIM the
ability to capture all nuances of a sentence. In addition, all the
sentences and constraints of ENALIM have a graphical notation with
text needed only in rare occasions.

Being first is not always an enviable position. ENALIM does suffer
from a bit of impoverishment in its ability to describe situations in
the real world component. Deficiencies in the information modeling
component have been addressed with subsequent IDEF] like addi-
tions under the NIAM method set. However, major deficiencies in
the real world component relative to representing abstractions, tem-
poral relation, definite descriptions, and others have received little
formal treatment.

The lack of a focusing mechanism is ENALIM s primary deficiency.
Instead of being able to describe details of a portion of the model and
then hide these descriptions at a higher level of abstraction, the model
is made up of only one level of detail. Therefore, models tend to
explode in size and becomes unmanageable even with currently
available automated tools. The above developed information
metamodel of ENALIM will be used to provide some insight into
ways of alleviating this problem.

49

Final Report

Analysis of Methods

4.5 Tips and Traps

The main trap analysts tend to fall into is that they do not constrain
the enterprise they are modeling. Therefore, the models tend to
become extremely large. Consequently, an ENALIM model must be
properly focused on the information system to be modeled. This will
decrease the model size and corresponding complexity.

4.6 Integration With Other Methodologies

The IDSE Research Team is currently looking for commonality
among the previously mentioned methods based on each methods’
metamodel. Once the equivalent model constructs can be determined,
a neutral information representation schema will be developed. At
this writing, we are still in the process of determining the common
constructs across the different methodologies.

4.7 Conclusions

A concise description of the ENALIM methodology has been in-
cluded to aid in the description of the IDEF| metamodel of ENALIM.
This metamodel serves as the basis from which integration decisions
concerning ENALIM will be derived. Additional benefits of the
metamodel include: 1) providing a less ambiguous understanding of
the methodology among the team members, 2) providing a common
reference point for the team from which decisions can accurately be
made conceming integration, and 3) providing an initial platform for
the development of integration techniques.

50

Final Report

Analysis of Methods

ENALIM

Appendix A. Abbreviations used in the ENALIM Metamodel
Class: inherited attribute which partially identifies a subtype.

Constraint-Type: attribute which describes the type of constraint.
Codomain: joint uniqueness, role equality, role exclusion and role
subtype constraint.

RCID: Role Constraint [Dentifier; uniquely identifies Role-Con-
straint.

Fact-Type: an entity class which describes the association between
two objects.

Identifier-Type: attribute which specifies the categories of identifier
constraints. Codomain: one-to-one, synonym, homonym and syno-
homonym.

Object: an entity class which keeps information about object types.

Object-Name: occurs in the key class of Object, uniquely identifies
the object.

Object-Role-Pair: an entity class describing the role an object plays
in a relation.

Object-Type: attribute which specifies the type of object - LOT or
NOLOT.

ORP-u-i-RC: QObject Role Pair used in Role Constraint; an entity
class.

PID: Pair IDentifier; uniquely identifies Object-Role-Pair.

Role-Constraint. an entity class which describes constraints on the
object instances for a set of roles.

Role-Name: attribute which identifies the role an object plays in
Fact-Type.

SCID: Subtype Constraint [Dentifier; occurs in the key class of
Subtype-Constraint, uniquely identifies Subtype used in Subtype
Constraint.

ST-u-i-STC: SubType use in SubType Constraint: an entity class.
Subclass: inherited attribute which partially identifies a subtype.
Subtype: an entity class which describes the subtype link.

Subtype-Constraint. an entity class which identifies the type of
constraint placed on the subtype.

Total-Role-Constrainr. an entity class.

51

Final Report

Analysis of Methods

ENALIM

References

Nijssen, G. M., “The Next Five Years in Data Base Technology”,
Paper presented at: Infotech State of the Art Conference, Regent
Centre Hotel, London, 12-14 December 1977.

Nijssen, G. M., “On Conceptual Schemata, Databases, and Informa-
tion Systems”, Preliminary Version, Paper presented at: Data
Bases - Improving Usability and Responsiveness, August 2-3,
1978, Haifa, Israel.

ISO, Concepts and Terminology for the Conceptual Schema and the
Information Base edited by J. J. van Griethuysen, March 15,
1982.

Nijssen, G. M., Informatie Analyse en Data Bases 82, Universiteit
van Queensland, Brisbane, Australie, December 1982.

Nijssen, G. M., De Productieve Combinatie ISAC + NIAM = 3,
Universiteitvan Queensland, Brisbane, Austriale, December
1982.

Thompson, Paul, “Natural Language Analysis, Information Model-
ing, and Database Engineering”, Control Data Corporation, Min-
neapolis, Minnesota, February 14, 1985.

Van Assche, F., “Some Natural Extensions to NJAM”, International

Center for Information Analysis Services, Control Data Belgium,
Inc., September 1985.

52

IDEF1x: Data Modeling

Analysis of Methods

ata modeling is one facet of the overall Information Systems

Architecture (ISA) development scheme. Several methodolo-
gies for data modeling, including the Integrated Computer-Aided
Manufacturing (ICAM) DEFinition (IDEF) language IDEF)x,
Chen’s Entity-Relation (ER) [Chapter 6], and Nijssen’s Evolving
NAtural Language Information Model (ENALIM) [Chapter 4], have
emerged over the past fifteen years. Historically, data modeling was
introduced for database design. Consequently, the developers of
these methodologies have been influenced by the needs of a database
designer. The metamodel of IDEF|x presented in this chapter was
developed as part of an effort to integrate a complete set of ISA
modeling methods. The metamodel can also be used to aid in under-
standing the basic concepts and principles of the methodology and to
contrast IDEF|x with the other data modeling methodologies.

5.1 History and Purpose

A methodology is a language system. Like any other type of system,
there are many different methodologies for various purposes. There
are currently three primary IDEF methodologies: IDEFq, IDEF1, and
IDEF|x. There is also IDEF which was developed to support simu-
lation modeling. It has largely been replaced by commercially avail-
able simulation modeling systems. IDEF is used to model activities
and the relations between activities. IDEF| models the logical struc-
tures of the information in a system. Finally. IDEF|x was introduced
to model the data kept about entities within a system for the purpose
of conceptual schema design for three schema database systems as
defined by the ANSI SPARC report on database management sys-
tems [DACOM 85, ANSI 75]. Note that this is not the same as
conceptual schema design for the conceptual information processor
integration concept as defined in the ISO report [ISO 87].

53

Final Report

Analysis of Method's

IDEF

u..
A

EDaED

H

ISO Conceptual-Schema Architecture

Because of the name, IDEFi5 is often thought of as an extension to
IDEF;. In actuality, the two are complimentary. IDEF!x picks up at
the data design point after the information requirements (expressed
in IDEF1) are complete. The developers of IDEFx did not simply
extend IDEF], but instead started from different foundations. For
example, as stated in [DACOM 85] IDEF|x entities correspond to
“things about which data is kept, e.g. people, places, ideas, events,
etc.”, in contrast to the IDEF] entity which corresponds to “logical
information managed in the organization.” We have used IDEF] as
our metamodeling language for this analysis effort since we must do
an information level integration of the methods prior to doing a
logical database design. As the IDEF| model of IDEF iy is developed
later in the paper, the differences between the two methodologies will
be demonstrated.

The primary reference for IDEF|x is the Integrated Tnformation
Support System (IISS) report prepared for General Electric by the D.
Appleton Company [DACOM 85]. That report provides a brief
history, a thorough review of the syntax and practice, and then a
detailed description of how to build an IDEFix model. A formal
theoretical foundation (syntax and semantics) for the method was
published in an Integrated Information Systems Evolution Environ-

~ ment (ISEE) Report [Mayer 88].

54

Final Report

Entity/#

Primary-Key

Alternate-Keys

Attributes

Identifier-Independent Entity

Analy&is of Methods

The purpose of this report is not to duplicate what was done in the
previous reports, but instead to describe the information managed
within an IDEF1x model by building an information model of it. The
purpose of this metamodel is to provide the basis for determining how
to integrate IDEF1x with other modeling methodologies. Until mul-
tiple methodologies can be integrated, there cannot be a coherent
framework for system development or a truly useful integrated
development support environment.

5.2 Syntax and Semantics

There are two stages of learning to model. The first is learning the
syntax and semantics of the modeling methodology. This is usually
done by having an expert teach a short course. On the other hand,
since the IDEF methodologies are syntactically easy to leam, it is
possible to leamn their syntax independently. The following section
should go a long ways toward that goal for those unfamiliar with the
IDEF1x method.

Once the syntax and semantics are understood, the hard part begins
(which is generally the reason for engaging an expert). Modeling can
actually be considered an art. It generally requires a large amount of
considered judgement. It is easy to create a meaningless (or blatantly
wrong) model. Each step of the modeling process, particularly the
model validation, needs to be followed carefully, so that the com-
pleted model is consistent. It is beyond the scope of this work to teach
proper modeling techniques, but where possible tips will be given. It
is also a goal of the IDSE Project to develop tools that will aid in
checking the semantics of a model.

5.2.1 Entities

An entity represents a set of data instances. For example, the entity
“Person” represents the data kept about people in an enterprise. The
instances could be data kept about Jim, Mary, or Bob. Similar data
are kept about each of the instances. It is important to keep in mind
that an “entity” represents sets of data, not the physical objects that
the data describes.

There are two primary types of entities, identifier-independent and
identifier-dependent. Identifier-independent entities can exist with-
out any other entities, while identifier-dependent entities are mean-
ingless without other entities. In a model of graduate students, the
student’s committee is an example of an identifier-dependent entity.
The committee is dependent on the student and his or her advisors

55

Final Report

Entity/#

Alternate-Keys
ttributes

Identifier-Dependent Entity

framt)

for its existence. Dependence and independence are specific to a
model.

Identifier-independent entities are represented by rectangles with
square comers. The unique entity name is placed just above the box
along with a unique entity number. The box is divided by a solid line.
The primary set of attributes which uniquely identify the entity are
placed above the line.

Identifier-dependent entities look similar to identifier-independent
entities, except that the corners of the rectangle are rounded. Identi-
fier-dependent entities inherit at least one of their primary key
attributes from a parent entity.

5.2.2 Connection Relationships

Connection relationships show how entities (sets of data instances)
relate to one another. The relationships are always between exactly
two entities. The connection relationship starts at the independent, or
parent, entity and ends at the dependent, or child, entity. The connec-
tion relationship is labeled with a verb phrase which describes the
relationship. A filled circle is drawn at the dependent end.

The connection relationship in Figure 5.1 is called an identifying
relationship. Identifying relationships are signified by a solid line.
Non-identifying relationships are drawn as a dashed line. The child
entity in an identifying relationship must be identifier-dependent.

Parent-Entity/# Child-Entity/#

Primary-Key Frimary-l(ey w
verb-phrase

Alternate-Keys Alternate-Keys

Descriptive Attributes scriptive Attributes

—@ olormay
__F" One or many
_Z‘ Zero or one
—@® Exuiyn

Cardinalities

Analysis of Methods

Figure 8.1 Identifying Connection Relationship

Each connection relationship has a cardinality. The cardinality spec-
ifies the number of instances of the dependent entity that are related
to an instance of the independent entity. For example, an instance of
the data about a house is related to many instances of the data about
a room.

There are four different cardinality types. Relations are always drawn
starting at the independent entity. Thus, a zero-or-one relation means

that there is zero or one dependent entity for every one independent
entity.

56

Final Report

IDEF |y

5.2.3 Categorization Relationships

Up until now IDEFx has been similar to IDEF) syntactically. Cate-
gorization relations are specific to IDEFix. They cause models de-
veloped in the two methodologies to look quite different.

Categorization relationships allow the modeler to define categories
of objects. For instance there could be an entity named “Car” which
is the generic entity in a category showing different types of cars.
Each of the category entities must have the same primary key as
“Car”. Also, there must be a way of distinguishing between the
category entities. The category entities are distinguished by a dis-
criminator attribute which must have a different value for each
category entity. The category relationship syntax is shown in Fig-
ure 5.2.

Category-Entity/2

QGeneric-Entity/!
Primary-Key
Category Name
Category-Entity/3 Category-Entity/4
w ﬁ’rimnry-l(ey W (Pn'mnry-l(zy

Frim-ry-l(ey

t)iscrimimtor

J

-

e 0 o
LDiscrimimtor J LDiscriminnor

Analysis of Methods

Figure 5.2 Category Relationship Syntax

It is important to make sure that there is a need for a category, and
that meaningless entities are not being created by mistake. Some
models have category entities which do not contain the discriminator
attribute. Though this may be reasonable in some cases, it can lead
down the path toward unnecessary entities.

An entity can act as a generic entity in many category relationships,
but an entity can only act as a category entity in one relationship.
Also, a category entity can have only one generic entity. In other
words, hierarchies must be structured so that it is not possible for an
entity to be a member of two categories.

57

Final Report

Analysis of Methods

[DEF}x

Since a category entity is only a category member, it cannot partici-
pate as a child in an identifying connection relationship. Only the
generic entity can participate in such a relation.
